

A SPARSE MATRIX FORMULATION OF THE MODEL-BASED ENSEMBLE KALMAN FILTER

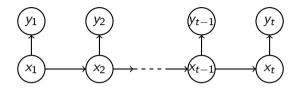
Håkon Gryvill

Joint work with Håkon Tjelmeland

- Outline

- 1. Standard EnKF
- 2. Issues with standard EnKF
- 3. Model-based EnKF
- 4. Computational issues with model-based EnKF
- 5. New strategy
- 6. Results
- 7. Closing remarks

Introduction - State space model

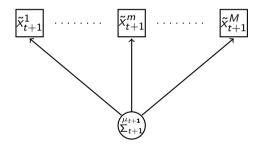


- ▶ Variables of interest $x_1, \ldots, x_t \in \mathbb{R}^n$. High dimensional.
- ► $x_1 \sim p(x_1)$
- Forward model $x_{t+1} = g(x_t, \epsilon_t)$
- ▶ Observations $y_1, \ldots, y_t \in \mathbb{R}^m$
- Observation model $y_t | x_t \sim N(Hx_t, R)$
- Aim: *filtering* distribution $p(x_t|y_1, \ldots, y_t)$

Introduction - Update step

Part 1: Compute $\tilde{\mu}_{t+1}$ and $\tilde{\Sigma}_{t+1}$

- Approximate μ_{t+1} and Σ_{t+1} by $\tilde{\mu}_{t+1}$ and $\tilde{\Sigma}_{t+1}$



Introduction - Update step

Part 2: Update \tilde{x}_{t+1}^m into x_{t+1}^m

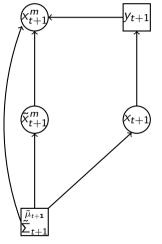
- Assume $\tilde{x}_{t+1}^m, x_{t+1} | \tilde{\mu}_{t+1}, \tilde{\Sigma}_{t+1} \stackrel{iid}{\sim} N(\tilde{\mu}_{t+1}, \tilde{\Sigma}_{t+1})$
- $\triangleright y_{t+1}|x_{t+1} \sim N(Hx_{t+1}, R)$

Require

$$\mathbf{x}_{t+1}^{m} | \tilde{\mu}_{t+1}, \tilde{\Sigma}_{t+1}, y_{t+1} \stackrel{d}{=} x_{t+1} | \tilde{\mu}_{t+1}, \tilde{\Sigma}_{t+1}, y_{t+1} | \mathbf{x}_{t+1}, \tilde{\Sigma}_{t+1}, y_{t+1} | \mathbf{x}_{t+1}, \tilde{\Sigma}_{t+1}, y_{t+1} | \mathbf{x}_{t+1}, \tilde{\Sigma}_{t+1}, y_{t+1} | \mathbf{x}_{t+1}, \tilde{\Sigma}_{t+1}, \mathbf{x}_{t+1} | \mathbf{x}_{t+1}, \mathbf{x}_{t+1} | \mathbf{x}_{t+1} |$$

Satisfied by standard EnKF update:

$$x_{t+1}^m = \tilde{x}_{t+1}^m + \tilde{K}_{t+1}(y_{t+1} + \tilde{\epsilon}_{t+1}^m - H\tilde{x}_{t+1}^m)$$



Introduction - Update step

Part 2: Update \tilde{x}_{t+1}^m into x_{t+1}^m

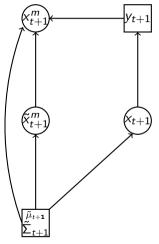
- Assume $\tilde{x}_{t+1}^m, x_{t+1} | \tilde{\mu}_{t+1}, \tilde{\Sigma}_{t+1} \stackrel{iid}{\sim} N(\tilde{\mu}_{t+1}, \tilde{\Sigma}_{t+1})$
- $\triangleright y_{t+1}|x_{t+1} \sim N(Hx_{t+1}, R)$

Require

$$\mathbf{x}_{t+1}^{m} | \tilde{\mu}_{t+1}, \tilde{\Sigma}_{t+1}, y_{t+1} \stackrel{d}{=} \mathbf{x}_{t+1} | \tilde{\mu}_{t+1}, \tilde{\Sigma}_{t+1}, y_{t+1} | \mathbf{x}_{t+1}, \tilde{\Sigma}_{t+1}, y_{t+1} | \mathbf{x}_{t+1}, \mathbf{x}_{t+1} | \mathbf{x}_{t+1} | \mathbf{x}_{t+1} | \mathbf{x}_{t+1}, \mathbf{x}_{t+1} | \mathbf{x}_{t+1}, \mathbf{x}_{t+1} | \mathbf{x}_{t+1} | \mathbf{x}_{t+1} | \mathbf{x}_{t+1}, \mathbf{x}_{t+1} | \mathbf{x}_{$$

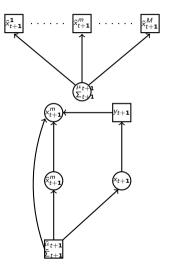
Also satisfied by square root filter:

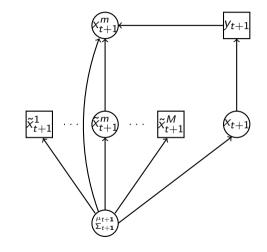
$$\begin{aligned} x_{t+1}^{m} &= \tilde{\mu}_{t+1} + \tilde{K}_{t+1}(y_{t+1} - H\tilde{\mu}_{t+1}) + B(\tilde{x}_{t+1}^{m} - \tilde{\mu}_{t+1}), \\ B\tilde{\Sigma}_{t+1}B^{T} &= (I - \tilde{K}_{t+1}H)\tilde{\Sigma}_{t+1} \end{aligned}$$



Introduction - Issues

- Uncertainty in $\tilde{\mu}_{t+1}, \tilde{\Sigma}_{t+1}$ is ignored
 - Solution proposed in Myrseth and Omre (2010) and Tsyrulnikov and Raktiko (2017)
- ▶ Information in \tilde{x}_{t+1}^m is used twice (inconsistently)
 - Solution proposed in Houtekamer and Mitchell (1997)
- ► Information in y_{t+1} about μ_{t+1}, Σ_{t+1} is ignored
 - Discussed in Myrseth and Omre (2010), but ignored
- Why this EnKF update?
- EnKF tends to underestimate uncertainty





Introduced in Loe and Tjelmeland (2020)

$$\tilde{x}_{t+1}^{1}, \dots, \tilde{x}_{t+1}^{M} | \mu_{t+1}, \Sigma_{t+1} \stackrel{iid}{\sim} N(\mu_{t+1}, \Sigma_{t+1})$$

$$(\mu_{t+1}, \Sigma_{t+1}) \sim \mathsf{NIW}(\mu_{0}, \lambda, \Psi, \nu)$$

$$y_{t+1} | x_{t+1} \sim N(Hx_{t+1}, R)$$

Require:

 $x_{t+1}^{m}|\tilde{x}_{t+1}^{1},\ldots,\tilde{x}_{t+1}^{m-1},\tilde{x}_{t+1}^{m+1},\ldots,\tilde{x}_{t+1}^{M},y_{t+1} \stackrel{d}{=} x_{t+1}|\tilde{x}_{t+1}^{1},\ldots,\tilde{x}_{t+1}^{m-1},\tilde{x}_{t+1}^{m+1},\ldots,\tilde{x}_{t+1}^{M},y_{t+1}$ Optimality criterion: Minimise

$$\mathsf{E}\left[(x_{t+1}^{m} - \tilde{x}_{t+1}^{m})^{T}(x_{t+1}^{m} - \tilde{x}_{t+1}^{m})\right]$$

Algorithm

- Sample $\mu_{t+1}^m, \Sigma_{t+1}^m | \tilde{x}_{t+1}^1, \dots, \tilde{x}_{t+1}^{m-1}, \tilde{x}_{t+1}^{m+1}, \dots, \tilde{x}_{t+1}^M, y_{t+1} \sim \mathsf{NIW}(\mu_0^\star, \lambda^\star, \Psi^\star, \nu^\star)$
- Compute Kalman gain K_{t+1}^m
- Compute weight matrix B_{t+1}^m
- Update

$$x_{t+1}^{m} = \mu_{t+1}^{m} + B_{t+1}^{m}(\tilde{x}_{t+1}^{m} - \mu_{t+1}^{m}) + K_{t+1}^{m}(y_{t+1} - H\mu_{t+1}^{m})$$

Algorithm

- Sample $\mu_{t+1}^m, \Sigma_{t+1}^m | \tilde{x}_{t+1}^1, \dots, \tilde{x}_{t+1}^{m-1}, \tilde{x}_{t+1}^{m+1}, \dots, \tilde{x}_{t+1}^M, y_{t+1} \sim \mathsf{NIW}(\mu_0^\star, \lambda^\star, \Psi^\star, \nu^\star)$
- Compute Kalman gain K_{t+1}^m
- Compute weight matrix B_{t+1}^m
- Update

$$x_{t+1}^{m} = \mu_{t+1}^{m} + B_{t+1}^{m} (\tilde{x}_{t+1}^{m} - \mu_{t+1}^{m}) + K_{t+1}^{m} (y_{t+1} - H\mu_{t+1}^{m})$$

Results

- Provides reliable results with realistic uncertainty representation
- However: Computationally demanding

Computational issues - Prior for model parameters

Recall:

- $\blacktriangleright (\mu_{t+1}, \Sigma_{t+1}) \sim \mathsf{NIW}(\mu_0, \lambda, \Psi, \nu)$
- $\blacktriangleright \tilde{x}_{t+1}^1, \dots, \tilde{x}_{t+1}^M | \mu_{t+1}, \Sigma_{t+1} \stackrel{\text{iid}}{\sim} N(\mu_{t+1}, \Sigma_{t+1})$
- $\implies \mu_{t+1}^{m}, \Sigma_{t+1}^{m} | \tilde{x}_{t+1}^{1}, \dots, \tilde{x}_{t+1}^{m-1}, \tilde{x}_{t+1}^{m+1}, \dots, \tilde{x}_{t+1}^{M}, y_{t+1} \sim \mathsf{NIW}(\mu_{0}^{\star}, \lambda^{\star}, \Psi^{\star}, \nu^{\star})$

Computational issues - Prior for model parameters

Recall:

$$(\mu_{t+1}, \Sigma_{t+1}) \sim \mathsf{NIW}(\mu_0, \lambda, \Psi, \nu)$$

$$\tilde{x}_{t+1}^1, \dots, \tilde{x}_{t+1}^M | \mu_{t+1}, \Sigma_{t+1} \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu_{t+1}, \Sigma_{t+1})$$

$$\Longrightarrow \ \mu_{t+1}^m, \Sigma_{t+1}^m | \tilde{x}_{t+1}^1, \dots, \tilde{x}_{t+1}^{m-1}, \tilde{x}_{t+1}^{m+1}, \dots, \tilde{x}_{t+1}^M, y_{t+1} \sim \mathsf{NIW}(\mu_0^\star, \lambda^\star, \Psi^\star, \nu^\star)$$

Issues:

- Sampling from NIW($\mu_0^{\star}, \lambda^{\star}, \Psi^{\star}, \nu^{\star}$) is computationally demanding
- $\succ \Sigma_{t+1}^m$ is a full matrix

Computational issues - Prior for model parameters

Recall:

$$(\mu_{t+1}, \Sigma_{t+1}) \sim \mathsf{NIW}(\mu_0, \lambda, \Psi, \nu)$$

$$\tilde{x}_{t+1}^1, \dots, \tilde{x}_{t+1}^M | \mu_{t+1}, \Sigma_{t+1} \stackrel{\text{iid}}{\sim} \mathsf{N}(\mu_{t+1}, \Sigma_{t+1})$$

$$\implies \mu_{t+1}^m, \Sigma_{t+1}^m | \tilde{x}_{t+1}^1, \dots, \tilde{x}_{t+1}^{m-1}, \tilde{x}_{t+1}^{m+1}, \dots, \tilde{x}_{t+1}^M, y_{t+1} \sim \mathsf{NIW}(\mu_0^*, \lambda^*, \Psi^*, \nu^*)$$

Issues:

- ► Sampling from NIW($\mu_0^{\star}, \lambda^{\star}, \Psi^{\star}, \nu^{\star}$) is computationally demanding
- $\succ \Sigma_{t+1}^m$ is a full matrix

Solution:

- Use sparse precision matrix $Q_{t+1} = \Sigma_{t+1}^{-1}$
- Choose distribution such that

1. $Q_{t+1}|\tilde{x}_{t+1}^1, \dots, \tilde{x}_{t+1}^{m-1}, \tilde{x}_{t+1}^{m+1}, \dots, \tilde{x}_{t+1}^M, y_{t+1}$ can be sampled efficiently **2.** $Q_{t+1}|\tilde{x}_{t+1}^1, \dots, \tilde{x}_{t+1}^{m-1}, \tilde{x}_{t+1}^{m+1}, \dots, \tilde{x}_{t+1}^M, y_{t+1}$ becomes sparse

Computational issues - Computing weight matrix B_{t+1}^m

Recall:

$$x_{t+1}^m = \mu_{t+1}^m + B_{t+1}^m (\tilde{x}_{t+1}^m - \mu_{t+1}^m) + K_{t+1}^m (y_{t+1} - H\mu_{t+1}^m)$$

"Optimal update"

Computational issues - Computing weight matrix B_{t+1}^m

Recall:

$$x_{t+1}^{m} = \mu_{t+1}^{m} + B_{t+1}^{m} (\tilde{x}_{t+1}^{m} - \mu_{t+1}^{m}) + K_{t+1}^{m} (y_{t+1} - H\mu_{t+1}^{m})$$

"Optimal update"

We compute B_{t+1}^m as follows

- **1.** Cholesky decomposition $VV^T = Q_{t+1}$
- **2.** Cholesky decomposition $UU^T = Q_{t+1} + H^T R H$
- **3.** Compute $Z = V^T U$
- **4.** Compute singular value decomposition $Z = PGF^{T}$
- 5. Compute $B_{t+1}^m = U^{-T} F P^T V^T$

Computational issues - Computing weight matrix B_{t+1}^m

Recall:

$$x_{t+1}^{m} = \mu_{t+1}^{m} + B_{t+1}^{m} (\tilde{x}_{t+1}^{m} - \mu_{t+1}^{m}) + K_{t+1}^{m} (y_{t+1} - H\mu_{t+1}^{m})$$

"Optimal update"

We compute B_{t+1}^m as follows

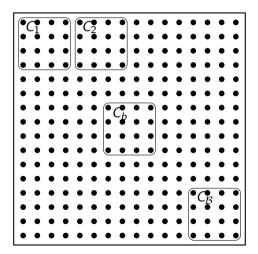
- **1.** Cholesky decomposition $VV^T = Q_{t+1}$
- **2.** Cholesky decomposition $UU^T = Q_{t+1} + H^T R H$
- **3.** Compute $Z = V^T U$
- **4.** Compute singular value decomposition $Z = PGF^{T}$

5. Compute
$$B_{t+1}^m = U^{-T} F P^T V^T$$

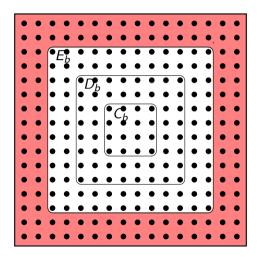
Issue:

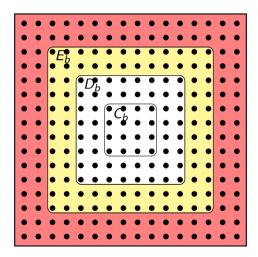
Computing step 4 is computationally demanding when Z is large

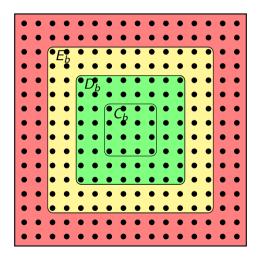
Resembles domain localisation, but the motivation is different

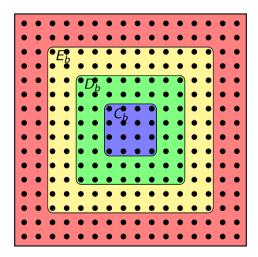


•	•	•	•	٠	•	•	•	•	٠	•	•	٠	•	٠	•
•	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
•	•	P	-b	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	٠
•	•	•	ĕ	•	٠	•	•	•	•	•	•	•	•	٠	•
•	•	•	٠		\mathcal{I}_b	٠	٠	٠	٠	٠	•	٠	•	٠	٠
•	•	•	٠	•	ĕ	•	•	•	•	•	•	•	•	٠	•
•	•	•	•	•	•	$\left(\begin{array}{c} \bullet \end{array} \right)$	C_{b}	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•		•	•	•	•	_	•	•	•	•	•	•
	-	•	-		-	-		-	-				•		•
	-	-			-	-	-	-	-	-	_				
			-		-	-		-			-				-
	-	•	-	-	-	-	-	-	-	-	-	-	-		
	-														
	•	-													









Simulation examples - Aim

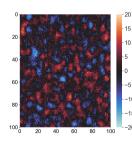
Aim:

Compare the optimal update and block update

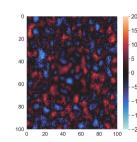
- Computational demands
- Results

Simulation examples - Setup

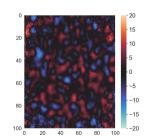
- State vector x_t constructed in a grid of size $s \times s$
- x₁ is Gaussian field, spatial correlation structure
- Forward function: Deterministic, smoothing around center node
- Vague prior for μ and Q. Same for all time steps
- Observations: local average, additive Gaussian noise



 x_1



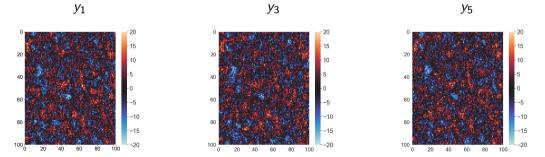
 X_3



 X_5

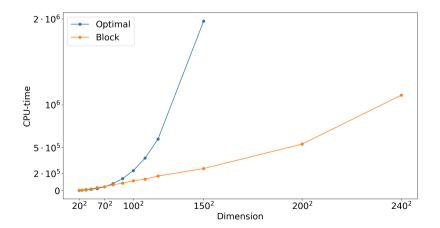
Simulation examples - Setup

- State vector x_t constructed in a grid of size $s \times s$
- x₁ is Gaussian field, spatial correlation structure
- Forward function: Deterministic, smoothing around center node
- Vague prior for μ and Q. Same for all time steps
- Observations: local average, additive Gaussian noise



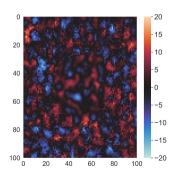
Simulation examples - Comparison of CPU-times

- ▶ Run both update procedures on grids of sizes $20 \times 20, 30 \times 30, \dots, 120 \times 120$ and 150×150 .
- Additionally, run block update with $200 \times 200, 240 \times 240$

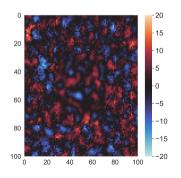


Simulation examples - Stepwise comparison

- $\blacktriangleright\,$ Run both update procedures on a 100 $\times\,$ 100-grid
- Block update: blocks of size 20×20
- The two ensembles are updated using the same forecast ensemble, observations and model parameters



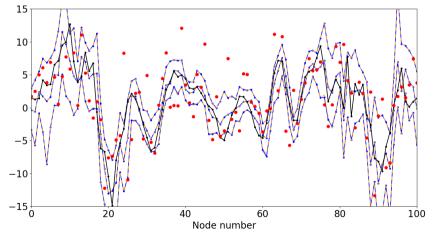
Optimal



Simulation examples - Stepwise comparison

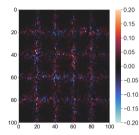
Comparison along one cross section of the grid

t = 3

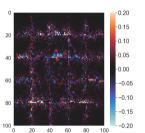


Simulation examples - Stepwise comparison

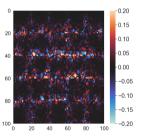
t = 1



t = 3



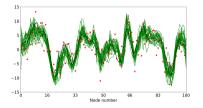
t = 5

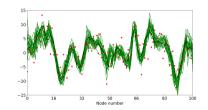


Simulation examples - Comparing different simulations

• Run both update procedures for t = 5 iterations

Optimal



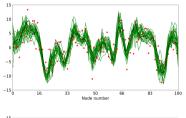


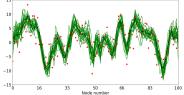
Block

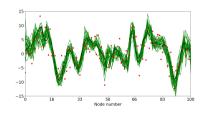
Simulation examples - Comparing different simulations

• Run both update procedures for t = 5 iterations

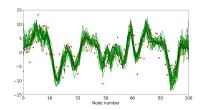
Optimal







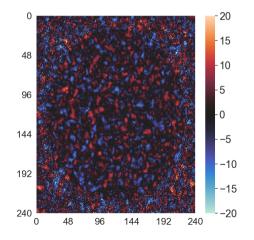
Block



Simulation examples - High-dimensional simulation example

> Run block update on a grid of size 240×240 for t = 10 iterations

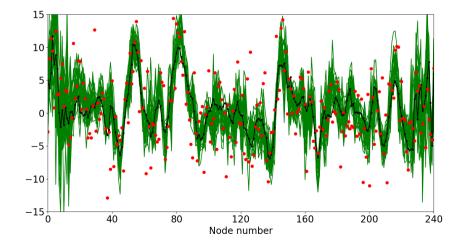
t = 9



Simulation examples - High-dimensional simulation

One cross section

t = 9



Closing remarks - Summary

New strategy

- Formulate model using precision matrices
- Sparse precision matrices
- Block update

Results

- Block update faster than optimal
- Block update provides essentially similar results

